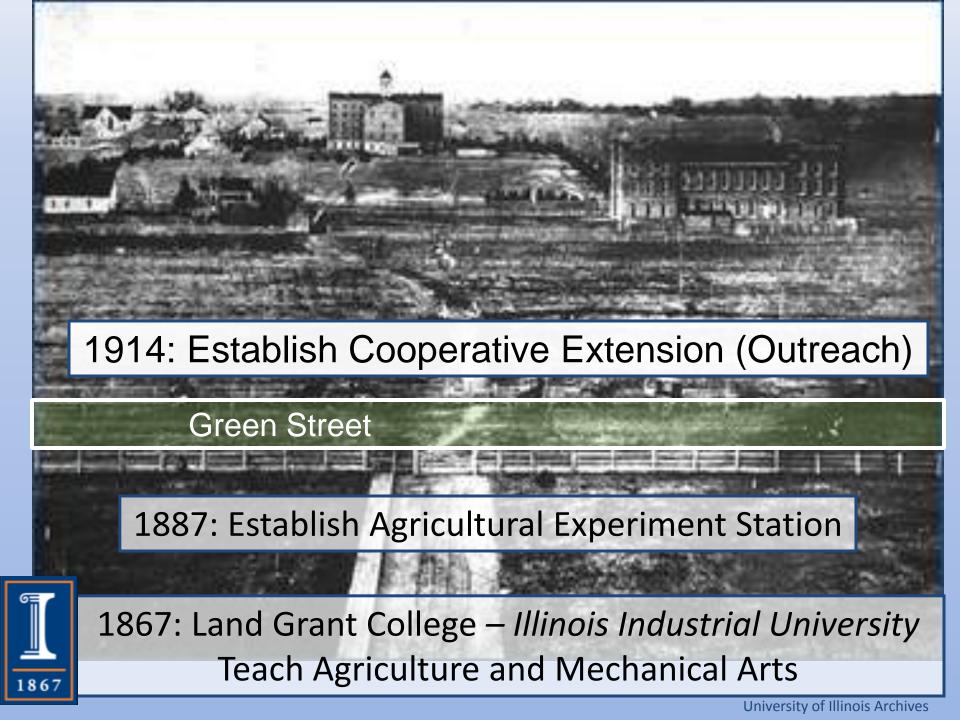
University of Illinois Extension and Illinois Nutrient Strategy

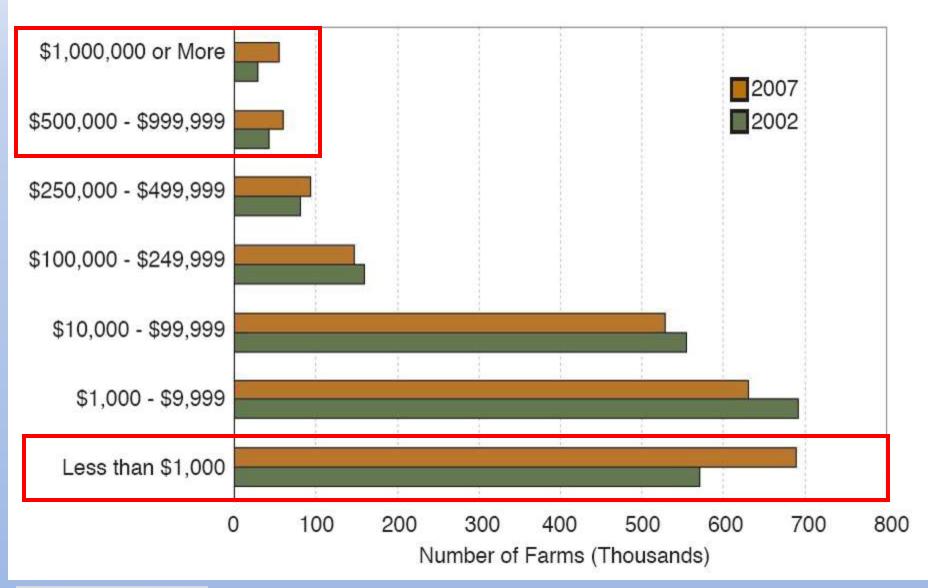
George Czapar University of Illinois Extension gfc@illinois.edu


> IFCA Convention January 22, 2014

University of Illinois Archives

湯山

align attended



Sampling soil from the Morrow Plots, 1904

Number of Farms by Sales Class

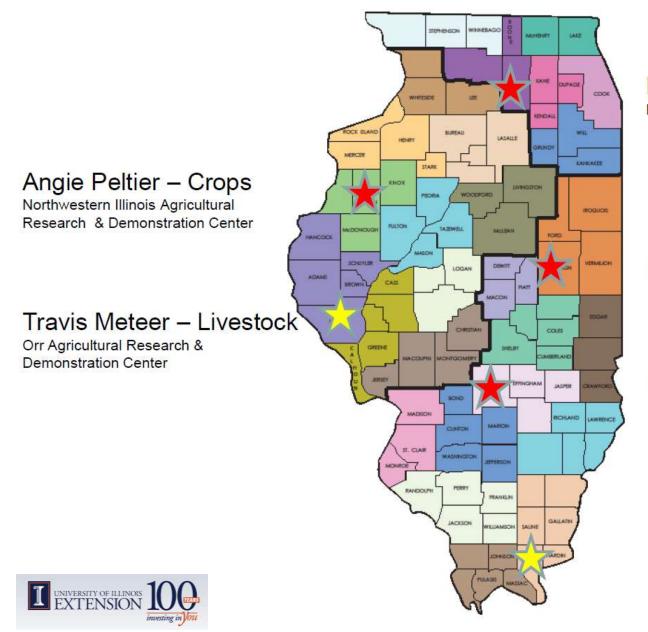
UNIVERSITY OF ILLINOIS 1000

2007 Census of Agriculture

-Chairs:

and Bradday

the Bulletin


10 10 12 72

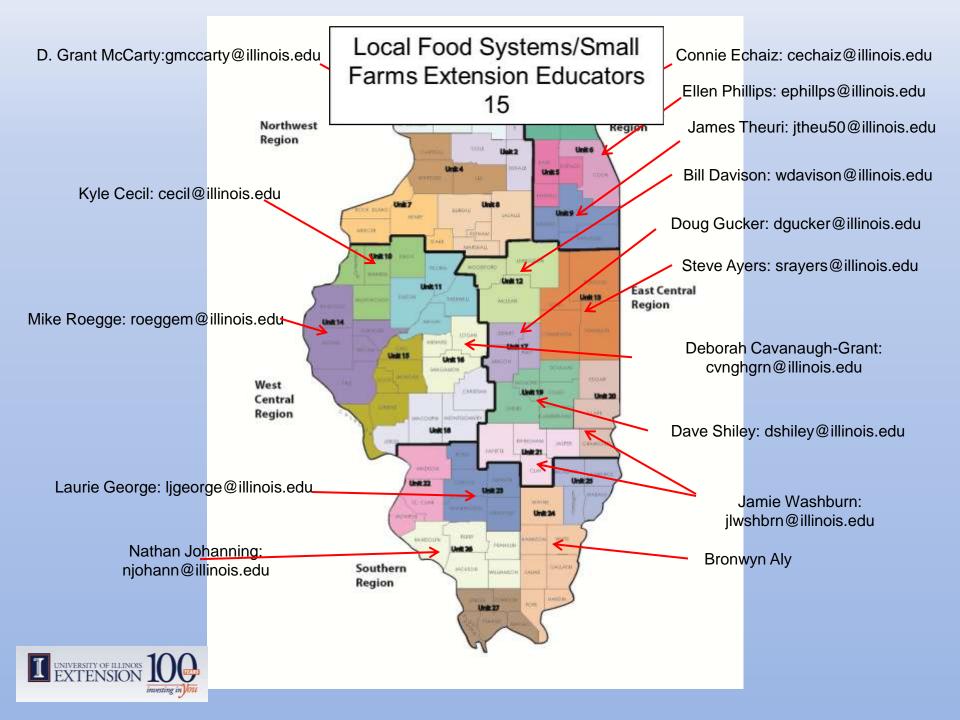
pest management and crop development information for Illinois

the report The research was funded by the Office of

Commercial Agriculture Educators

Russ Higgins – Crops Northern Illinois Agronomy Research Center

Dennis Bowman – Crops Crop Sciences Research & Education Center


Robert Bellm – Crops

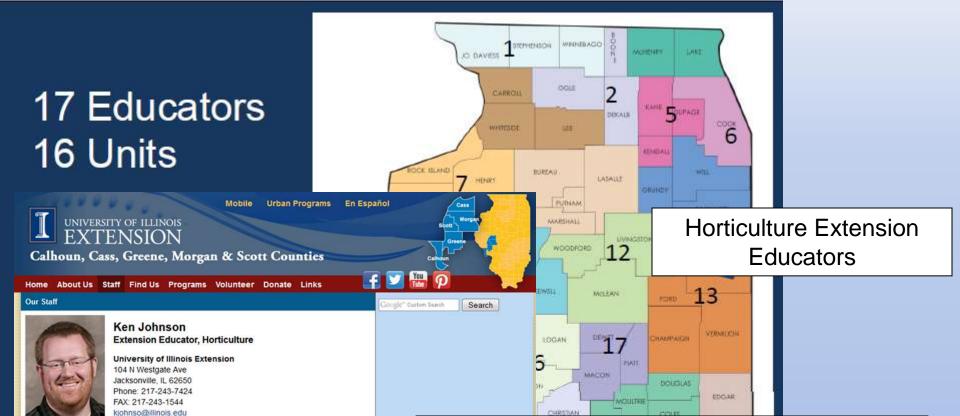
Brownstown Agronomy Research Center

Teresa Steckler – Livestock Dixon Springs Agricultural Center

- Environmentally and economically sound crop production practices
 - Insect, weed & disease management
 - Nutrient source, placement, & timing
 - Crop rotations & innovative cropping systems
 - Geospatial Information System and crop sensors

 Develop scaleappropriate business and farm management plans for new and transitional producers

Increase local food production



 Increase understanding of marketing and distribution

336 Farmer Markets in Illinois (2012)

Ken Johnson is the Horticulture Educator serving Calhoun, Cass, Greene. Morgan and Scott Counties.

He received a bachelor's degree in biology from Illinois College in 2006. He earned his doctorate in plant medicine (DPM) as well as a certificate in Plant Pest Risk Assessment and Management from the University of Florida in 2012. While at the University of Florida, he received a National Needs Fellowship and worked at IPM Florida. There he assisted in maintaining their website and in the production of extension material on integrated pest management (IPM). He also worked at the Plant Medicine Program's Clinical Trials where he assisted in conducting experiments testing different chemicals for plant disease and insect control.

Before attending the University of Florida, He worked at the Walt Disney World Resort in Florida as an entomology intern in their hydroponic greenhouses at the Land Pavilion at Epcot. While there he was responsible for rearing and maintaining insect colonies, releasing beneficial insects and predator mites into the greenhouses and assisted with pest monitoring and greenhouse IPM programs.

PhD, University of Florida, Plant Medicine - includes prevention, diagnosis, and management of plant health problems.

Master Gardener Program

- 2012 MG volunteer hours: 197,497 hours to Illinois residents
- 2012 economic value of volunteer service: \$4.3 million
- 2012 new MGs trained: 470
- Over 36,000 youth, 53,000 adults received instruction by MG volunteers in 2012

Across team boundaries

- Commercial Agriculture
 - Educational programs on new 2, 4-D and Dicamba resistant crops, spray drifts, etc...
 - Home gardeners education on GMO crops

Across team boundaries

Current collaboration

- Small Farms and Local food systems
 - Joint in-service training
 - Putting Small Acres to Work
- Pesticide Safety Education Programs (PSEP)
 - General standard IPM, Ornamental and turf diseases
- Energy and Environment
 - Private well testing program

Environmental & Energy Stewardship Extension Educators 5

Jay Solomon

- Jo Daviess/Stephenson/Winnebago

Peggy Doty

- Boone/DeKalb/Ogle

Duane Friend

- Calhoun/Cass/Greene/Morgan/Scott

Jason Haupt

- Fulton/Mason/Peoria/Tazewell

Gary Letterly

- Christian/Jersey/Macoupin/Montgomery

Soil & Water Management Workshops

- Statewide land management:
 - landowners, farmers, ranchers and agribusiness professionals
- Over 150 participants over the past two years:
 - Certified Crop Advisor accredited.
 - EES team members have served as organizers and presenters during this time period
- Other program collaborators:
 - U of I ACES staff, Ohio State University, University of Minnesota and Iowa State University

Certified Crop Adviser

Welcome

Welcome to the Certified Crop Adviser website. Below are the courses that are currently available. If you do not have an account with University of Illinois Extension yet, you can register here and sign up for the courses you would like to take. This registration is separate from your ICCA login. An individual may only receive credit for taking a module once.

Once you complete a course, University of Illinois Extension will report any CEUs you receive to the International Certified Crop Adviser Program in Madison.

If you have problems logging into this site, please contact uie-ewd@illinois.edu.

Soils and Flooding

Explore how flooding occurs and about its affect on soil and crops.

\$7.50 - 0.5 CEU in Soil and Water Management

UNIVERSITY OF ILLINOIS EXTENSION INVESTIGE IN OU

Corn Residue and Foliar Disease Learn about corn foliar diseases and best practices to avoid

them.

UNIVERSITY OF ILLINOIS EXTENSION

IILLINOIS ACES I EXTENSION investing in You

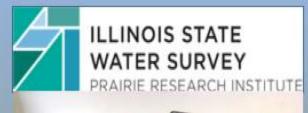
ILLINOIS Master Naturalist

ILLINOIS Master Naturalist Curriculum Guide CHAPTER 1 Introduction to the Illinois Master Naturalist Program by Elizabeth R. Dispose, Gaussiely of Brane Estimate. Wichael R. Seffords, Winner Factured Theory Society Increase of National Resource Summarbility Lanux Kaname, University of Nation Office of Stational-Hity. Sandra Manan, Germonity of Honor Robinson, Rubort J. Rahm, Uncountry of Honor Festmann, and Dave White Deservity of Morie Letteries All on with the University of Marine of Chilana Chemptonia. Chapter Objectives Lienscherterer. Manuel the Program Illinois Masor Naturalist Program Parmers. Distan Natural Meaning Surveys The Platate Conservation Char Minstern and Viscon What is a Master Neuralist? Acatolians that May Interest the Master Naturalist Classicanan and Field Transmit Foundation Chaptersi Economic Chapters "Obapier" Chapters Sepalemental Chapmen When To Expert from Training gran Certification Responses Towning and Volument Responses Levels of Illinois Moner Naturdity Farmingstone Martin Naturality Transer Massee Naturality Benners Master Nationalist Conductor Cartilled (Active: Master Naturalise, Manne Naturalise Aluternos/Leave of Alberton Adminifasion . Vidument Ageneinent antaning Certification Continuing Eduction Volumen Opportunities and Requirements -Notaral Rowmany Stewarthing Educational Efforts :... Administrative Elliptic Rivers Marine Naturdist Program Policies Like of the Master Naturation Tale Beccumption and Austrile Coefficia al Inscient. Countrils Inv Discoursed of a fillester Nanualise

Program Controllution

represent Readings-States.

Easel Orgenturity Spremmet Attenance Action Americans with Disabilities Act.

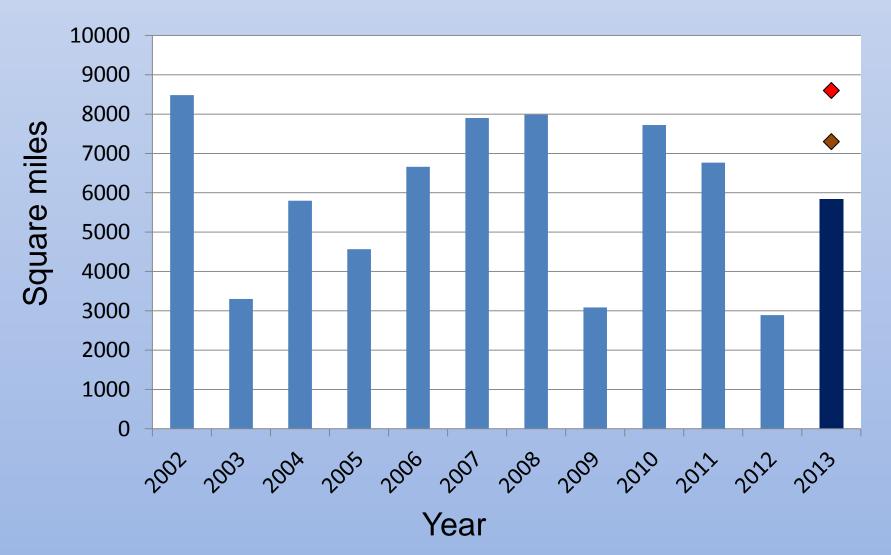

Beprinting Victorities Activities and Communing Education

110

Private Well Testing

- Statewide private well water sampling project in collaboration with the Prairie Research Institute/Illinois State Water Survey.
- Team members and other unit staff worked with private well owners in areas across 6+ units.
- At the local-level stakeholder groups were used to identify private wells.
- State Water Survey Public Service Lab provided analysis of several potential contaminants including arsenic and nitrate.
- Results /Outcomes

- Illinois Natural History Survey
- Illinois State Archaeological Survey
- Illinois State Geological Survey
- Illinois State Water Survey
- Illinois Sustainable Technology Center


UNIVERSITY OF ILLINOIS EXTENSION

Area of Mid-Summer Bottom Water Hypoxia (Dissolved Oxygen < 2.0 mg/L)

Source: N.N. Rabalais, Louisiana Universities Marine Consortium and R.E. Turner, Louisiana State University

Real-Time Data and the "Super Gage"

The USGS operates and maintains national hydrologic monitoring networks consisting of more than 8,000 streamgages that typically provide water stage data and volumetric streamflow data. Often, other parameters are monitored at streamgage sites, such as water temperature, precipitation, and water quality. The physical infrastructure of a streamgage and the data recording and telemetry instrumentation it contains makes the streamgage an ideal platform for measuring and transmitting a variety of parameters—simultaneously, in real time—to examine unique trends in water resources in a critical resource area such as agricultural and urban land-use effects, water-related human health issues, floods and droughts, or hazardous-substance spills. The USGS has developed the "super gage" concept to describe such streamgages.

An example of a super gage is White River at Hazleton, Indiana (USGS streamgage 03374100). This is a large-river site with a drainage area of 11,305 square miles of primarily agricultural land. Parameters collected at this streamgage are the following:

- Physical water parameters: stage, streamflow, water velocity, water temperature, and suspended sediment (using measurements of turbidity as a surrogate).
- Water-quality parameters: dissolved oxygen, specific conductance, pH, and nitrate.

The USGS and partner agencies will use these data to assess environmental impacts of agricultural and other land-use practices through a better understanding of short-term, long-term, and seasonal trends and through more accurate water-quality modeling.

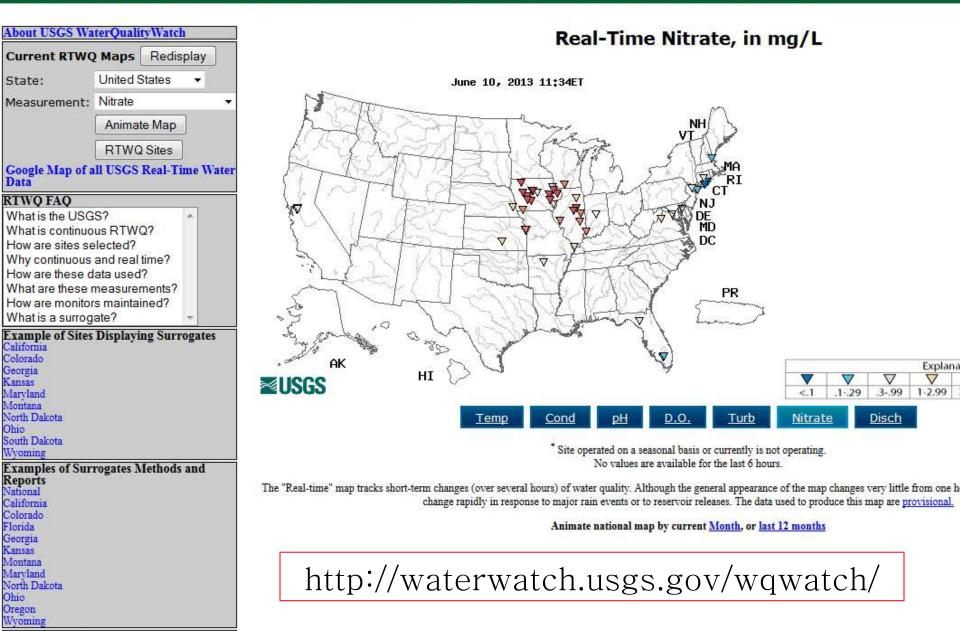
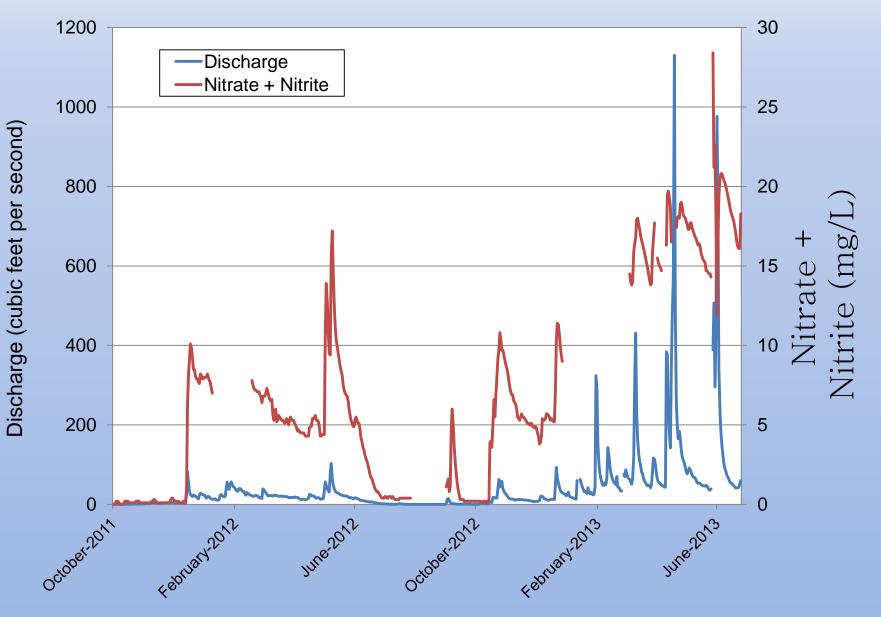



Figure 5. Example of a super gage is White River at Hazleton, Indiana (U.S. Geological Survey streamgage 03374100).


Highlight

WaterQualityWatch -- Continuous Real-Time Water Quality of Surface Water in the United States

USGS 05554300 INDIAN CREEK NEAR FAIRBURY, IL

waterwatch.usgs.gov

CyMail Outlook Blackboard AccessPlus

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Directory Maps

IOWA STATE UNIVERSITY

Iowa Nutrient Reduction Strategy

Home

Search

Iowa Nutrient Reduction Strategy

The Iowa Nutrient Reduction Strategy is a science and technology-based framework to assess and reduce nutrients to Iowa waters and the Gulf of Mexico. It is designed to direct efforts to reduce nutrients in surface water from both point and nonpoint sources in a scientific, reasonable and cost effective manner.

The Mississippi River/Gulf of Mexico Watershed Nutrient Task Force was established in 1997 to coordinate activities to reduce the size, severity and duration of hypoxia in the Gulf. Hypoxia is a large area of low oxygen that can't sustain marine life. Nutrients that lead to algae growth are the main culprit.

In its 2008 Action Plan, the task force called upon each of the 12 states along the Mississippi River to develop its own nutrient reduction strategy.

Working together, the Iowa Department of Agriculture and Land Stewardship, the Iowa

The Iowa Nutrient **Reduction Strategy** was developed by:

IOWA STATE UNIV

Iowa Nutrient Reduction Strategy

	- C
Home	
Welcome video	Section 2
Strategy documents	
News releases	
Publications and presentations	
Resources	and the state
Contacts	
Comments and responses	
	Iowa N

The Iowa N

assess and direct efforts

in a scientif

The Missis:

1997 to coc

Gulf. Hypox

lead to alga

In its 2008 /

Mississippi

Iowa Strategy to Reduce Nutrient Loss: Nitrogen Practices

This table lists practices with the largest potential impact on nitrate-N concentration reduction (except where noted). Corn yield impacts associated with each practice also are shown as some practices may be detrimental to corn production. If using a combination of practices, the reductions are not additive. Reductions are field level results that may be expected where practice is applicable and implemented.

	Practice	Comments	% Nitrate-N Reduction ⁺	% Corn Yield Change**
			Average (SD*)	Average (SD*)
	Timing	Moving from fall to spring pre-plant application	6 (25)	4 (16)
		Spring pre-plant/sidedress 40-60 split Compared to fall-applied	5 (28)	10 (7)
		Sidedress – Compared to pre-plant application	7 (37)	0 (3)
		Sidedress – Soil test based compared to pre-plant	4 (20)	13 (22)**
H	Source	Liquid swine manure compared to spring-applied fertilizer	4 (11)	0 (13)
eme		Poultry manure compared to spring-applied fertilizer	-3 (20)	-2 (14)
Nitrogen Management	Nitrogen Application Rate	Nitrogen rate at the MRTN (0.10 N:corn price ratio) compared to current estimated application rate. (ISU Corn Nitrogen Rate Calculator – http://extension.agron.iastate.edu/soilfertility/nrate.aspx can be used to estimate MRTN but this would change Nitrate-N concentration reduction)	10	-1
	Nitrification Inhibitor	Nitrapyrin in fall – Compared to fall-applied without Nitrapyrin	9 (19)	6 (22)
	Cover Crops	Rye	31 (29)	-6 (7)
		Oat	28 (2)	-5 (1)
	Living Mulches	e.g. Kura clover – Nitrate-N reduction from one site	41 (16)	-9 (32)
Land Use	Perennial	Energy Crops – Compared to spring-applied fertilizer	72 (23)	(
		Land Retirement (CRP) – Compared to spring-applied fertilizer	85 (9)	5
	Extended Rotations	At least 2 years of alfalfa in a 4 or 5 year rotation	42 (12)	7 (7)
	Grazed Pastures	No pertinent information from Iowa – assume similar to CRP	85	6
	Drainage Water Mgmt.	No impact on concentration	33 (32)	
eld	Shallow Drainage	No impact on concentration	32 (15)	ð.
1-10	Wetlands	Targeted water quality	52	
-a6	Bioreactors		43 (21)	6 2
Edge-of-Field	Buffers	Only for water that interacts with the active zone below the buffer. This would only be a fraction of all water that makes it to a stream.	91 (20)	

/a Nutrient on Strategy reloped by:

⁺ A positive number is nitrate concentration or load reduction and a negative number is an increase.

++ A positive corn yield change is increased yield and a negative number is decreased yield. Practices are not expected to affect soybean yield. * SD = standard deviation. Large SD relative to the average indicates highly variable results.

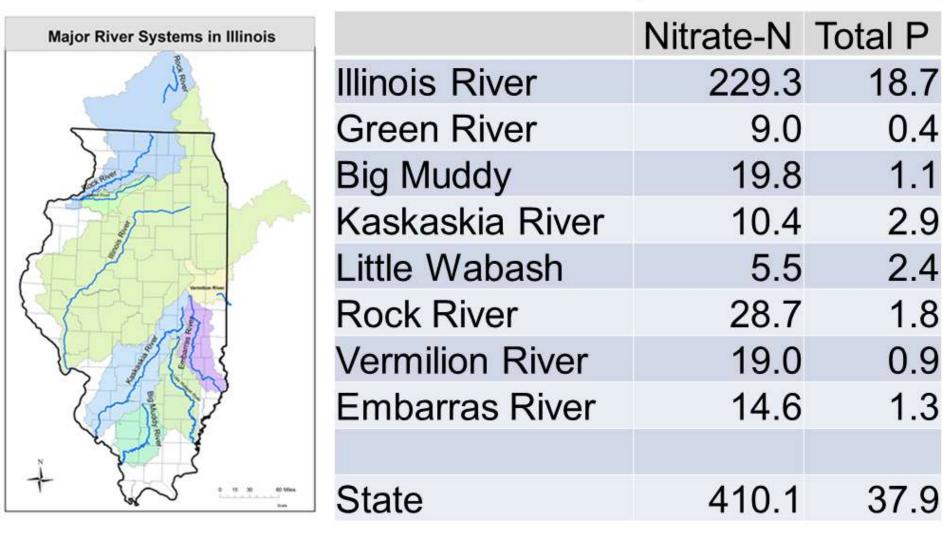
** This increase in crop yield should be viewed with caution as the sidedress treatment from one of the main studies had 95 lb-N/acre for the pre-plant treatment but 110 lb-N/acre to 200 lb-N/acre for the sidedress with soil test treatment so the corn yield impact may be due to nitrogen application rate differences.

SP 435 February 2013

Working together, the Iowa Department of Agriculture and Land Stewardship, the Iowa

Science Assessment to Support an Illinois Nutrient Reduction Strategy

Mark David, George Czapar, Greg McIsaac, Corey Mitchell, and Gary Schnitkey

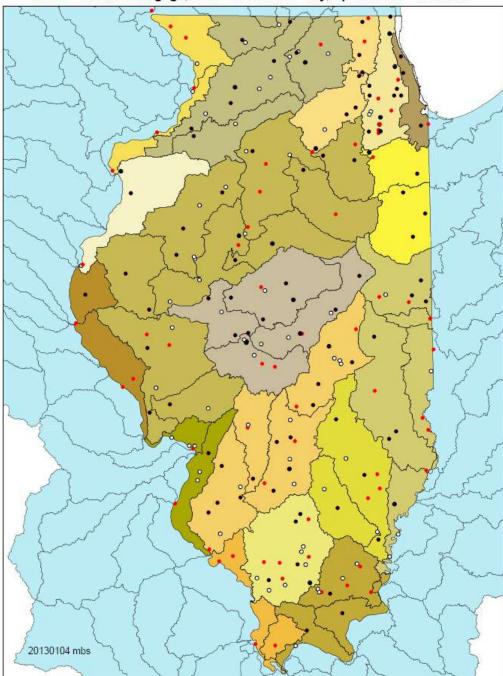


Science Assessment to Support an Illinois Nutrient Reduction Strategy, Illinois EPA

1. Determine current conditions

Riverine N and P Loads (1997-2011)

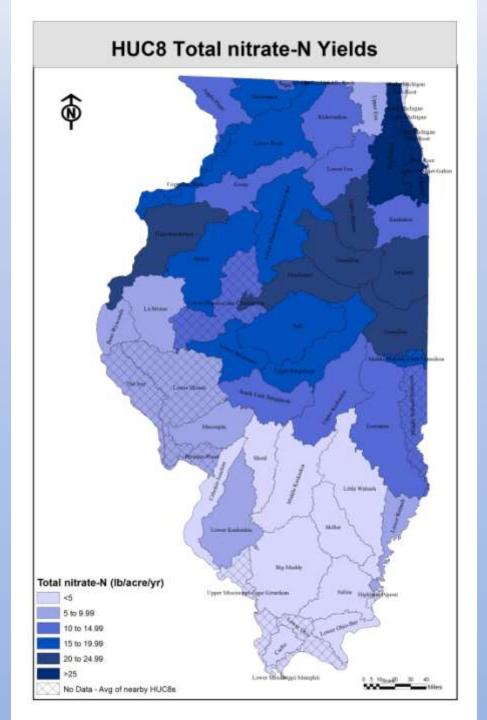
Million pounds/year

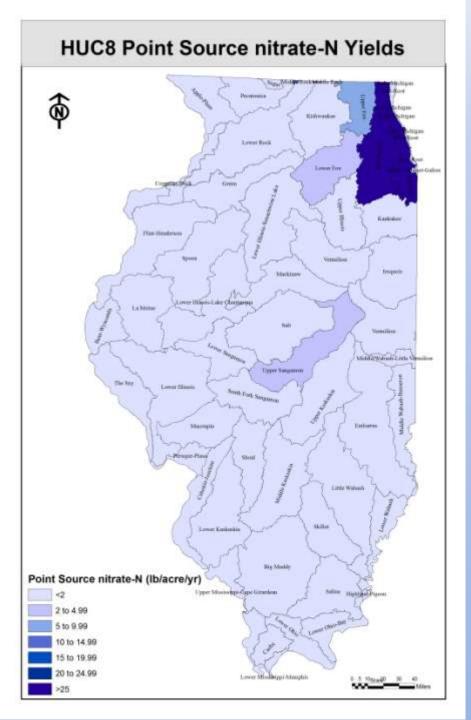


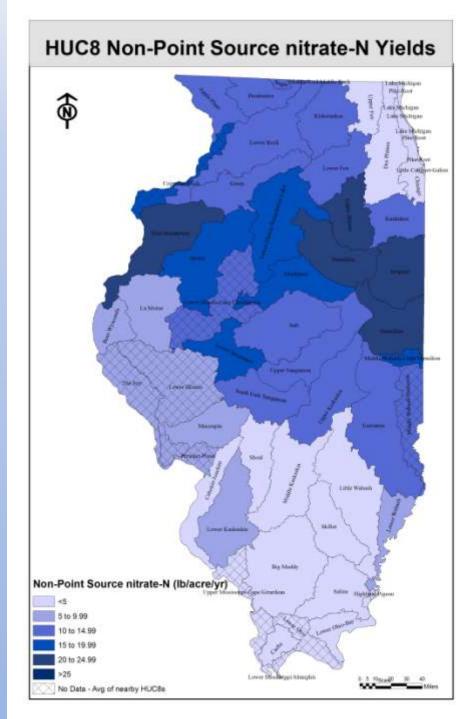
Draft: Science Assessment to Support an Illinois Nutrient Reduction Strategy

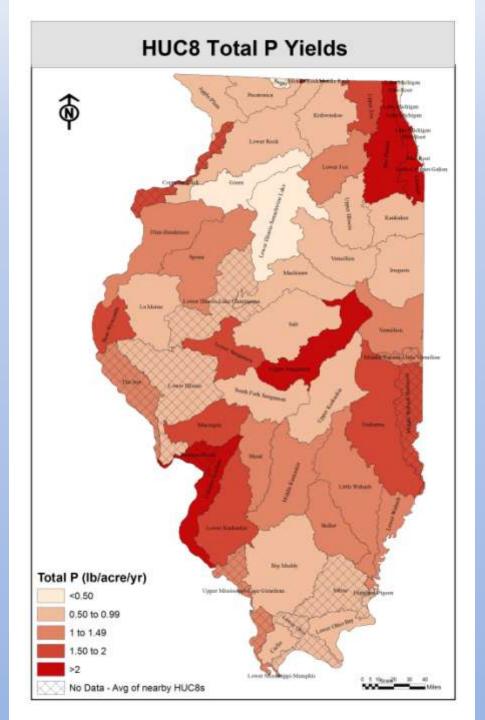
Science Assessment to Support an Illinois Nutrient Reduction Strategy, Illinois EPA

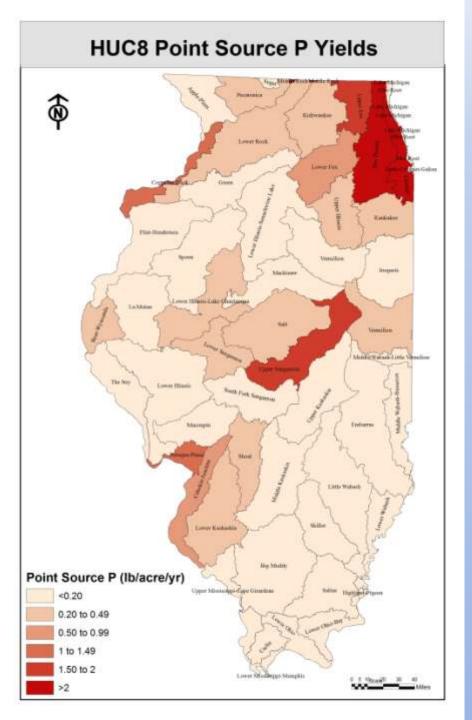
- 1. Determine current conditions
- 2. Identify critical watersheds

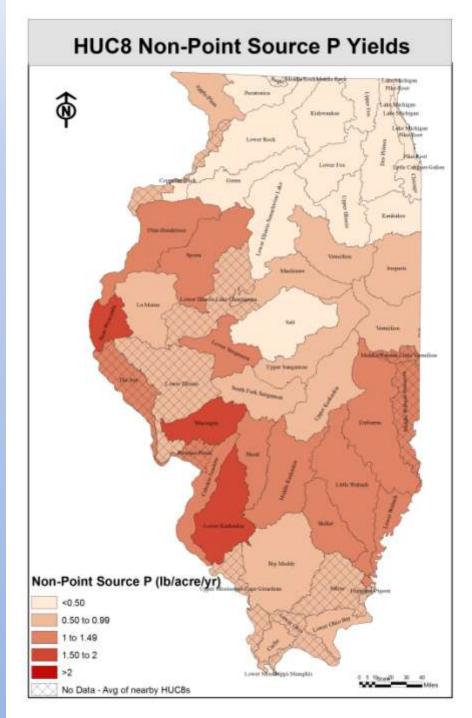

Figure 2. 8-digit HUCs in Illinois and IEPA ambient water quality stations. Black = active with gage, Red = active WQ only, open circle = inactive.




Watershed Terminology: Region = HUC-2 Subregrion = HUC-4 Basin = HUC-6 Subbasin = HUC-8 Watershed = HUC-10 Subwatershed = HUC-12


Critical Watershed Identification


- Identify 8 digits HUCs with the highest nutrient yields and loads to the Gulf of Mexico
- Estimate point and non-point sources of N and P within watersheds



Science Assessment to Support an Illinois Nutrient Reduction Strategy, Illinois EPA

- 1. Determine current conditions
- 2. Identify critical watersheds
- 3. Estimate potential reductions and costs

DRAFT

Example Statewide Results for N

	Practice/Scenario	Nitrate- N reduction per acre (%)	Nitrate- N reduced (million Ib N)	Nitrate-N Reduction % (from baseline)
	Baseline		410	
In-field	Reducing N rate from background to the MRTN (10% of acres)	10	2.3	0.6
	Nitrification inhibitor with all fall applied fertilizer on tile-drained corn acres	10	4.3	1.0
	Split (50%) fall and spring (50%) on tile-drained corn acres	7.5 to 10	13	3.1
	Fall to spring on tile-drained corn acres	15 to 20	26	6.4
	Cover crops on all corn/soybean tile-drained acres	30	84	20.5
	Cover crops on all corn/soybean non-tiled acres	30	32	7.9
Ļ	Bioreactors on 50% of tile-drained land	40	56	13.6
Edge-of- field	Wetlands on 25% of tile-drained land	40	28	6.8
Edo	Buffers on all applicable crop land (reduction only for water that interacts with active area)	90	36	8.7
Land use change	Perennial/energy crops equal to pasture/hay acreage from 1987	90	10	2.6
Lanc	Perennial/energy crops on 10% of tile-drained land	90	25	6.1
nt ce	Point source reduction to 10 mg nitrate-N/L		14	3.4
Point source	Point source reduction in N due to biological nutrient removal for P		8	1.8

Costs per acre

	Practice/Scenario	Cost Per Acre	Notes
In-field	Reducing N rate from background to the MRTN (10% of acres)	-\$8	Reduce N rates (20 pounds)
	Nitrification inhibitor with all fall applied fertilizer on tile- drained corn acres	\$7	Cost of inhibitor
	Split (50%) fall and spring (50%) on tile-drained corn acres	\$17	Additional field pass, switch to N solutions
	Fall to spring on tile-drained corn acres	\$18	Switch to N solutions, higher ammonia price, additional application costs
	Cover crops on all corn/soybean tile-drained acres	\$29	Aerial applications of cereal rye
	Cover crops on all corn/soybean non-tiled acres	\$29	Aerial applications of cereal rye
Edge-of- field	Bioreactors on 50% of tile-drained land	\$17	Upfront costs of \$133 per acre
	Wetlands on 25% of tile-drained land	\$60	5% of farmland out of production Major cost is land (\$11,000)
	Buffers on all applicable crop land (reduction only for water that interacts with active area)	\$294 per buffer acre	Land costs plus \$50 planting, \$10 yearly maintenance
Land use change	Perennial/energy crops equal to pasture/hay acreage from 1987	\$86	Less profit compared to corn-soybean rotation
Lan ch	Perennial/energy crops on 10% of tile-drained land	\$86	Less profit compared to corn-soybean rotation

Science Assessment to Support an Illinois Nutrient Reduction Strategy, Illinois EPA

- 1. Determine current conditions
- 2. Identify critical watersheds
- 3. Estimate potential reductions and costs
- 4. Develop scenarios

Example Statewide N Scenarios

Name	Combined Practices and/or Scenarios	Nitrate-N (% reduction)	Total P (% reduction)	Cost of N Reduction (\$/lb)	Annualized Costs (million \$/year)
N1	MRTN rate, all spring N application, cover crops 70% tile-drained & 45% non-tiled, bioreactors 50%, wetlands 25%, all ag streams have buffers	45	20	3.71	690
N2	MRTN rate, all spring N application, cover crops 100% tile-drained & 70% non-tiled, bioreactors 50%, perennial crops non-tiled, point source to 10 mg nitrate-N/L	45	33	4.30	800
N3	MRTN rate, cover crops 100% tile- drained & 70% non-tiled, wetlands 25%, perennial crops non-tiled, all ag streams have buffers, point source to 10 mg nitrate-N/L	45	24	4.51	838
N4	MRTN rate, all spring N application, cover crops 5% tile-drained, bioreactors 50%	20	0.3	1.99	163
N5	MRTN rate, cover crops 35% tile- drained, bioreactors 50%	20	2	2.00	162
N6	MRTN rate, cover crops 75% tile- drained, 55% non-tiled	20	8	4.62	382

Bureau of Water

http://www.epa.state.il.us/water/nutrient

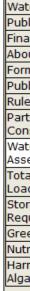
Illinois Statewide Nutrient Reduction Strategy

The impact of excess nitrogen and phosphorus in Illinois rivers, lakes, streams and the Gulf of Mexico is a very high profile water quality issue. Under the right conditions, nutrients can cause excessive algal blooms, low oxygen and nuisance conditions that adversely impact aquatic life, drinking water and recreational uses of the water.

<u>Nutrient Reduction Strategy Update Presentation - December 2013</u>

Nutrients can come from many sources, including:

- · Fertilizers from agriculture, golf courses, and suburban lawns
- Erosion of nutrient-rich soils
- Discharges from industrial and sewage treatment plants and
- Failing onsite septic systems.
- Deposition of atmospheric nitrogen


In other words, most aspects of modern society contribute to this pollution problem. The proportion of loading to a particular waterbody from these sources varies from watershed to watershed, and includes <u>point sources</u> and <u>non-point sources</u>, in both urban and agricultural landscapes.

Illinois EPA hosted meetings in 2010 for stakeholders representing government, environmental groups, municipal and industrial wastewater dischargers, agricultural groups, academia, non-governmental organizations and consulting firms with an interest in the topic of nutrient pollution. This was the beginning of a collaborative, problem-solving process to craft a Statewide Nutrient Reduction Strategy to address excess nutrients in Illinois waters and the Gulf of Mexico.

March 2013 Strategy Development Kick-off Meeting

On March 11, 2013, Illinois EPA hosted a meeting of stakeholders to announce that development of a statewide Nutrient Reduction Strategy was beginning. Approximately 100 attendees were present, representing the agricultural community, wastewater dischargers, environmental groups, government, technical assistance providers and academia. Attendees were welcomed by Warren Goetsch, Illinois Department of Agriculture, who identified that the 2008 Gulf of Mexico Hypoxia Action Plan includes development of statewide nutrient reduction strategies

Pat (

- Dratt Agenda
- Meeting Notes
- Illinois Science Assessment Update

Nutrient Reduction Strategy Policy Working Group, November 13, 2013: NRCS Illinois State Office, Champaign

- Draft Agenda
- Meeting Notes
- <u>Illinois Science Assessment Update</u>

Nutrient Reduction Strategy Policy Working Group, January 15, 2014: Asmark Agricenter, Bloomington

- Draft Agenda
- <u>Agriculture BMP Scenario Analysis</u>

Upcoming Nutrient Reduction Strategy Policy Working Group Meetings

- February 19, 2014, 1:30-3:30 p.m., Illini Center-Chicago
- March 19, 2014, 1:30-3:30 p.m., Illinois Department of Agriculture-Springfield
- April 16, 2014, 1:30-3:30 p.m., Location TBD
- May 21, 2014, 1:30-3:30 p.m., Location TBD

Planned Discussion Topics and Goals for Future Meetings/Subcommittees

Meeting Topics/Goals

Mississippi River/Gulf of Mexico Watershed Nutrient Task Force and Action Plan

eutrophication in the Gulf of		poxia.
Activities include coordinatii		ate
nutrients, and supporting o		
The role of the Task Force, actions of participating orga	http://www.epa.state.il.us/water/nutrient	iting the
The Mississippi River/Gulf o		jy to

The 2000 Artice plan another increases a second all starting the second the inclusion of an Annual Occurting plan and Annual Departments

Working to assist adoption of best management practices (BMPs) to minimize environmental impact, optimize harvest yields and maximize input utilization.

Home

Council Goals and Projects

Latest News and Reports

Council Members

Links to Other Resources

Events

Webinars

Contact Us

Logos

Illinois NREC Brochure

We are:

- a coalition of agribusinesses and agricultural organizations
- a clearinghouse on current research to protect water quality in Illinois
- a source for information and support for local watershed groups and water quality initiatives

Focus on Stewardship

Focus on Stewardship Through Farm Profitability and Nutrient Utilization

Lake Springfield Watershed Project Thursday, February 6, 2014, 8:30 to 11:30 a.m. Northfield Conference Center, 3280 Northfield Drive, Springfield, Illinois CCA CEUs: 1.5 NW, 1.5 SW No fee for meeting but pre-registration is requested Register Online Today

or phone (217) 241-6635 ext. 3

Topic: Cover crops as a tool for

Dan Schaefer, CPAg, CCA

Dan Schaefer, CPAg, CCA CBMP Director of Nutrient Stewardship

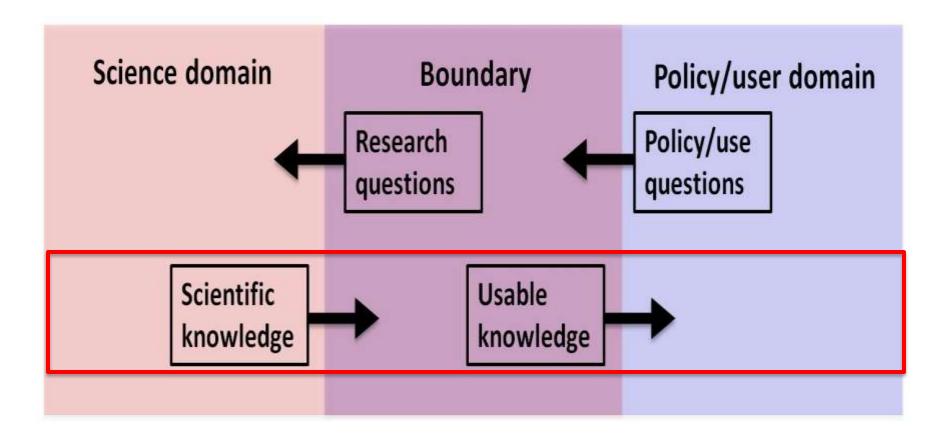
Dan joined CBMP in January 2012 to manage the "Keep it for the Crop (KIC) by 2025" nutrient stewardship program

UNIVERSITY OF ILLINOIS EXTENSION

Sampling soil from the Morrow Plots, 1904

"In Order to Aid in Diffusing Useful and Practical Information": Agricultural Extension and Boundary Organizations

David W. Cash Harvard University


Agricultural decision making is characterized by two challenges common to multiple arenas: linking science to decision making and linking science and decision making across multiple levels. The U.S. agricultural research, education, and extension system was designed to address these challenges. By investigating this system, this study deep-

"linking science to decision making..."

 e_i

Cash, 2001

Turnhout, 2007, Ecological Indicators

UNIVERSITY OF ILLINOIS EXTENSION

