Timing of Nitrogen Applications, Cover Crops, and Water Quality

¹Associate Profess of Hydrogeology
Department of Geography-Geology, Illinois State University
²Assistant Professor Agronomy, Agronomy Department, Purdue University

AGRONOMY

Illinois Nutrient Loss Reduction Strategy

The target is <u>45 percent reduction</u> in total phosphorus and nitrate-nitrogen that reaches Illinois waters <u>by 2025</u>.

To achieve that goal, we must enhance the efficiency of all common N management practices in our watersheds

Illinois Producer N Management Trends

- Decrease in fall applied N, but a larger portion of still remain
- Increase in spring applied N
- Large increase in split application of N (greater than or equal to 2 N applications within one growing season)

How do cover crops affect N availability and fate within common N management systems of IL?

N Conservation

Inorganic N sources cover crop interact with are:

 Soil inorganic N from OM

- Residual N
- Applied N, if a portion of N is applied in the Fall (DAP or Manure)

N Release

Cover crop residue N release depends on

- Physiology
- Species: Legume, grass, cereal
- C:N ratio

N Uptake

Corn and Soybean N and Yield

Effect of Cover Crops and Nitrogen Application Timing on Nutrient Loading Through Subsurface Drainage

Shalamar Armstrong¹, Catherine O'Reilly², Richard Roth³, Mike Ruffatti³, Travis Deppe³ and Corey Lacey⁴

¹ Assistant Professor, Purdue University Department of Agronomy, ²Associate Profess of Hydrogeology Department of Geography-Geology, Illinois State University

³M.S. Candidate In Agriculture Sciences, Illinois State University Department of Agriculture, ⁴Graduate Research Assistant, Purdue University Department of Agronomy

Nutrient Loss Reduction Strategies Evaluated

1. Change N application timing from fall to spring

2. Change N application timing from <u>fall</u> to <u>spring</u> + <u>cover crop</u>

3. Addition of <u>cover crops</u> to <u>fall applied N</u>
----Strip-till application of N into a living cover crop

Treatments

- 1. Control-No Fertilizer and No Cover crop
- 2. Spring Split Application of Nitrogen (20% Fall -DAP and 80% Anhydrous Ammonium)
- 3. Spring Split Application of Nitrogen (20% Fall-DAP and 80% Anhydrous Ammonium) + <u>Cover</u> <u>Crops</u>
- 4. Fall Split Application of Nitrogen (70% Fall-DAP and Anhydrous Ammonium and 30% sidedress- Anhydrous Ammonium)
- 5. Fall Split Application of Nitrogen (70% Fall-DAP and Anhydrous Ammonium and 30% sidedress- Anhydrous Ammonium) + <u>Cover Crops</u>

*Fall Anhydrous Ammonia was strip tilled into a living stand of Cereal and Radish Mix

Total N rate for all plots: 200 lb/A

Tile Monitoring Station

Power Source: Solar Panel, Battery, Power Converter

Methodology – Cover Crop Planting

Cover Crop Mixture
Daikon Radish (8%) Cereal Rye
(92%)

Seeding Rate: 84 kg ha⁻¹

Planting Date: Early to mid-Sept.

Precision Cover Crop and N Management

Precision Field Management

Cover Crop Biomass and N Uptake

Sample Time	Treatment	Average N Uptake (kg ha ⁻¹)	Average Biomass Production (kg ha ⁻¹)
Fall 2014	Fall N + Cover Crop	11.01	296.40
Fall 2014	Spring N + Cover Crop	9.77	236.65
Spring 2015	Fall N + Cover Crop	54.85	1052.46
Spring 2015	Spring N + Cover Crop	40.67	922.28
Fall 2015	Fall N + Cover Crop	54.86	1375.39
Fall 2015	Spring N + Cover Crop	63.86	1459.11
Spring 2016	Fall N + Cover Crop	61.21 (47% CR)	1828.53 (45%)
Spring 2016	Spring N + Cover Crop	71.11 (50% CR)	2180.72 (44%)

On average cover crops absorbed 25% (60 kg $ha^{-1} = 53 lb A^{-1}$)) of the total N rate applied.

Within the cereal rye/radish mixture, radish is responsible for 55% of biomass produced and 51% of N uptake

Cover Crops impact on Total Discharge by Season

- ➤ 32-42% reduction in drainage during cover crop growing seasons
- Little to no impact of cover crops on discharge during cash crop seasons

Cumulative Rainfall and Nitrate Loss

Cover Crop impact on residual N loss in the soybean year following corn

Cover Crop Impact on Nitrate Load by Season

- ➤ 51-67% reduction with cover crops <u>during cover</u> crop growing seasons
- ➤ 2015 CC growing season was warm and wet
 - SN vs FN: 47% increase

Cover Crops Impact <u>DRP</u> Load by Season

Cover Crop Seasons

- Spring system: <u>15-90%</u> reduction with cover crops
- Fall system: 37-69% reduction with cover crops

Little to no impact of cover crops on DRP load load during cash crops season

Cover Crop Impact on Cash Crop Yield

Summary

- On average cover crops stabilized 54 lb N A⁻¹
- Despite N management system (Fall or Spring) cover crops reduced N loss via tile drainage by 41-49%. Spring N + CC = Fall N + CC

- Cover crops are most effective when the are growing.
- Cover crops reduced corn N uptake and yield in the spring system, but not in the fall N system.

Cover crops did not affect soybean yield.

The Effect of Cover Crops on Surface Water Quality: A Paired Watershed Experiment in the Lake Bloomington Watershed

Shalamar Armstrong², Dr. Catherine O'Reilly¹, Ben Bruening³, Corey Lacey^{4,} Richard Roth⁵, and Michael Ruffatti⁵

¹Associate Profess of Hydrogeology Department of Geography-Geology, Illinois State University ²Assistant Professor Agronomy, Agronomy Department, Purdue University, ³Graduate Student, Department of Geography-Geology, Illinois State University, ⁴Graduate Student, Agronomy Department, Purdue University, and ⁵Department of Agriculture, Illinois State University

N Conservation-Watershed Scale

Sampling Site

Watershed

2016 Control

44% Corn/56% Soybean

2016 Treatment

32% Corn/68%Soybean

Fall and Spring Cover Crop Biomass Samples

Biomass samples were dried and analyzed for %N to determine cover crop N uptake Above ground biomass was collected from a 1 m quadrant from 8 ha grids across the watershed.

Fall sampling: 11/28/15

Spring sampling:4/2/15

2015/2016 Cover Crop Biomass (Par 1900 2080 1340 2160 1740 1620 2440 Red = Cereal Rye/Radish Yellow = Radish/Oats 1800 1780 1560 1960 1440 1440 1300 Increase in 700 616.2 **Cover Crop Biomass from Fall Biomass** to Spring (kg ha⁻¹) (kg ha⁻¹) 812.7 700 1,682 A 1,259 **CR/ Radish** 460 B Radish/Oats

2015/2016 Total Cover Crop N Uptake Red = Cereal Rye/Radish

Spring Soil Samples 4/18/16 – 4/21/16

- Soil samples were collected from 0-30 cm and 30-60 cm on 10 ha (20 acres) across the watershed.
- Soil were analyzed for NO₃-N and NH₄-N.

Soil NH_4 -N and NO_3 -N concentrations at the 0-30cm depth

Soil NH_4 -N and NO_3 -N concentrations at the 30-60cm depth

Cover Crops Impact on Nitrate Loading on a Watershed Scale

Nitrate Concentrations During Fall 2015 and Spring of 2016, <u>Cover Crop Season</u>

Nitrate Concentrations During 2016 <u>Cash Crop</u> <u>Season</u>

Nitrate Concentrations During Fall 2016 <u>Cover</u> Crop Season

Summary

- It is possible to cover crop on a watershed level, when you have the cooperation of farmers and industry leaders within the watershed.
- Cover Crops scavenged 21 − 58 kg N ha-1 (19 − 52 lb N A⁻¹).
- The type of cover crop planted can dictate the form(NO₃- or NH₄+) and location of available N in the soil during the spring after termination.
- During the cover crop growing season we observed a water quality signal.
 However, during the cash crop growing season additional effective N management practices are need to effect water quality.

