Nitrogen Considerations for the 2024 Season

Emerson Nafziger

Crop Sciences, University of Illinois

ILLINOIS Crop Sciences College of Agricultural, consumer & environmental sciences

Dry weather and crops 2023

Planted Apr 27; May 17 photo June 6

June 26 deficier

Dry weather and crops 2023

July 3

August 17

Cover crops were a problem for corn (and for soybeans) in some fields in 2023

Don't abandon cover crops after one tough year

August 22, 2023

I ILLINOIS

Corn tillage x cover crop, 2023

Don't "plant green," especially corn, especially into a grass cover crop, especially no-till

Long-term N x rotation, Monmouth (with cover crop since 2019)

Dry weather and N timing: it's "complicated"

Nitrogen in 2023

Nitrogen in 2023 - too much to too little to plenty

One issue: is N applied in Fall 2023 still present, and is it safe until N uptake begins (in late May)?

 It has been a relatively warm and dry since last fall in Illinois:

I ILLINOIS

Accumulated Precipitation (in): Departure from Mean November 1, 2023 to March 22, 2024

Average Temperature (°F): Departure from Mean November 1, 2023 to March 21, 2024

Fall/winter weather and spring soil N

N rate calculator: https://www.cornnratecalc.org/

200

MRTN with changing prices for 2024

Corn at \$4.25/bushel; N price as indicated

Added 2022 and 2023 results to MRTN calculator to produce these numbers Little change from 2022/2023 version

		3500/1 UANZO - 30.00/10 N							
IL Region	Rotation	No. of sites	NH ₃ /\$0.49	UAN28/\$0.68					
North	Soy-Corn	65	170 – 185*	153 - 165					
	Corn-Corn	67	200 - 213	179 - 193					
Central	Soy-Corn	308	175 - 188	162 - 173					
	Corn-Corn	155	195 - 207	178 - 191					
South	Soy-Corn	154	195 - 207	179 - 191					
	Corn-Corn	22	190 - 205	174 - 187					

* Upper end of range

 $$800/t NH_3 = $0.49/lb N$

00/4 IIANOO - co/16 N

Note that price used for N should be that of the last N form used – previous costs are already sunk. Count <u>all</u> N applied.

UAN timing/placement	Yield, bu/ac						5-yr
•Study with LIAN rate timing and	Timing/placement	2023	2022	2021	2020	2019	average
placement at Urbana	150 injected at planting	g 175	183	176	164	172	174
•Included a full N rate study w/	50P+100 injected at V6	182	186	189	167	184	182
UAN injected at planting	50P+100 dribbled at V6	5 181	188	181	165	176	178
•2023 trial: planted 4/27: V6 appl	50P+50inj/50dr at V6	175	196	174	166	178	178
6/2; V9 appl 6/17 (0.73" rain 6/2-6/17)	50P+50inj V6+50dr V10) 184	190	176	170	173	179
	50P+50dr V6+50dr V10	179	201	168	173	162	177
UAN study Urbana 2023	50P+100dr at V10	170	190	165	179	172	175
 ◆ UAN at planting ▲ Optimum ● Other treatments 150-lb N 	75inj/75dr at planting	185	187	175	165	169	176
250	150 dribbled at planting	g 181	197	156	155	195	176
200	EONR	214	111	213	187	149	
150							
p) 100	Rainfall by year						
	2	019 2	2020	2021	20	022	2023
	Plant to V6 3	.15	7.25	3.49	1	.54	2.29
0	V6 to V9 2	.87	3.28	0.81	1	.05	0.73
0 50 100 150 200 250 N rate, lb/acre	V9 to silk 1	.77 3	3.63	6.62	2	.79	2.77

N Rate Verification Trials:

- Project in its early years, funded by NREC
- Likely to replace most full-rate trials over time
- Dan Schaefer (IFCA) coordinates

This, in 500(?) IL fields each year 185 lb N: whole field rate Y1 Y2 Y3 Y4 240 in strip

N Rate Verification Trials (2-rate strips) in 2023

Central IL, 2023: 181 → 231 lb N

Adding 45 lb N added an average of 9.1 bu and \$23 net per acre

Adding 50 lb N added an avg of 5.4 bu and \$2 net/ac

N Rate Verification Trials (2-rate strips) in 2023

N Strip Trials, Southern IL, 2023 Avg med N: 195 lb/ac: high N: 234 lb/ac

Yield response, bu \$ response (\$0.50/lb N; \$5.00/bu)

Adding 49 lb N added an average of 11.0 bu and \$36 net/ acre

2-rate strip trials in Illinois in 2023 generally showed more positive yield and net \$ responses than in 2022 This was less the case in full-rate N response trials in 2023

Although N loss conditions (wet soils) were absent in Illinois in 2023, root access to N was likely limited by dry soil conditions in some fields, and adding N may have helped prevent this

- This was probably not fixable inseason in 2023

What about 2024? "Preventative" higher N rates are not justified (but very wet June weather might...?)

What about splitting N?

- It's a very reasonable way to apply some N for many
- It has seldom produced higher yield with the same N rate or the same yield with less N than all-early N, in silt loam or silty clay loam soils
- Might occasionally be needed to supply <u>additional</u> N (e.g., wet early)
- Small plants need N early

I ILLINOIS

- Timing of split is not critical in most soils and years, as long as there is N there early
- Sidedress NH₃ instead of UAN?

18 site-years, C & N IL

Stabilizers?

- The value of any inhibitor in any field situation depends what N rate is used, and on what happens between N application and plant N uptake
- Two main chemical types:
 - Nitrification inhibitors (nitrapyrin, DCD) slow microbial conversion of ammonium to nitrate
 - Urease inhibitors (NBPT) slow release of NH3 from urea
- Slow-release stabilizers: coatings (ESN); chemical agents (methylene urea)
- THINK before using is loss likely, and will stabilizers pay their way?

N-Serve[®] and Instinct NXTGEN[®] Nitrogen Stabilizers

The effect of nitrapyrin on grain yield consisted of 189 observations comprising 437 mean comparisons across 158 locations – years of experiments, with 141 of 189 observations showing a positive effect of nitrapyrin on yield. The grand mean represents a relative yield increase from nitrapyrin of 7.0% when used with fall nitrogen applications and of 5.2% when used with spring applications.

Source: NutrientStar

DCD did not have any beneficial yield impacts for either wheat or corn.

"Lower the N rate and add Product X" – a winning strategy?

If we compare a normal (higher) N rate without Product X to a lower N rate with Product X:

We do not know what the yield at the low N rate by itself would have been, so do not know if Product X affected yield

We need the lower N rate both with and without Product X to know if Product X affected yield

Make strips wide enough to take YM data, in strips and next to strips A second set of strips in the same or another field would be very useful

N rate x ProveN40 trial in Kentucky, 2023

Very dry first part of season Approximate yields: 140 N no PN 193 140 N + PN207 180 N no PN 187 180 N + PN197 Going from 140 to 180 lb N reduced yield by about 8 bu Adding ProveN increased yield by about 12 bu Likely: Higher N meant more stress ProveN increased root growth to help N uptake This combination is rare (other KY sites showed little response)

Revised Illinois Agronomy Handbook chapter

Website: https://extension.illinois.edu/global/agronomy-handbook

Nitrogen Management for Corn

by Emerson Nafziger | Reviewed by Dr. John Sawyer, Iowa State University and Jean Payne, Illinois Fertilizer & Chemical Association

THANK YOU

ILLINOIS Crop Sciences College of Agricultural, consumer & environmental sciences

